Düzce Üniversitesi Bilim ve Teknoloji Dergisi (Apr 2021)
Normalizasyon Yöntemlerinin RNA- Seq Verileri Üzerinde Çıkarılan Gen Birlikte İfade Edilme Ağlarının Performansına Etkisi
Abstract
Protein sentezi sürecinde meydana gelen farklılaşmaların metabolik hastalıklar, kanser gibi kompleks hastalıklara neden olduğu farklı çalışmalarda belirtilmiştir. Protein sentezindeki değişimlerin anlaşılması için proteinleri oluşturan genlerin belirlenmesi ve bu genlerin diğer genlerle ilişkilerin ortaya çıkarılması gerekmektedir. Yeni nesil dizileme teknikleriyle hastalıklara neden olan moleküler düzeyde ilişkilerin doğruluklu olarak belirlenmesi kolaylaşmıştır. Gen birlikte ifade edilme (GBİE) ağları düzenleyen-düzenleyici ilişkisi içermeden benzer biyolojik süreçlere katılan genler arasındaki ilişkileri araştırmacılara göstermektedir. Çalışmamızda RNA-Seq verileri kullanılarak prostat kanseriyle ilişkili GBİE ağları elde edilmiştir. RNA- Seq verileri farklı nükleotit uzunluğundaki genlerden ve farklı sayıda okumalar içeren örneklerden oluştuğu için normalizasyon teknikleri moleküler ilişki çıkarımında önem taşımaktadır. Çalışmamızda gen birlikte ifade edilme ağları ham veri ve farklı iki normalizasyon yaklaşımı olan M- Değerinin Kırpılmış Ortalaması (MDKO), Göreceli Log İfadesi (GLİ) hesaplamalarıyla ayrı ayrı oluşturulmuş veriler üzerinde çıkartılarak örtüşme analizi ve topolojik performans değerlendirilmesi yapılmıştır. Örtüşme analizine göre normalize edilmiş RNA- Seq verileri kullanarak elde edilmiş gen birlikte ifade edilme ağlarının ham verilere göre daha fazla literatürde bulunan ilişkileri tahmin ettiği gözlemlenmiştir. İki normalizasyon yöntemiyle elde edilen GBİE'lere ait örtüşme analizi performans metrikleri değerleri ise birbirlerine yakın çıkmıştır. Topolojik değerlendirme sonuçlara göre normalize edilmiş veriler üzerinde elde edilen GBİE ağlarının ölçeksiz ağ tanımına daha yakın olduğu gözlemlenmiştir. Çalışmamızda aynı zamanda ham ve normalize edilmiş veriler üzerinde GBİE ağ çıkarım algoritmaları olan C3NET, ARACNE ve WGCNA yaklaşımlarının performansları da karşılaştırılmıştır.
Keywords