Sensors (Nov 2021)

Deepfake Detection Using the Rate of Change between Frames Based on Computer Vision

  • Gihun Lee,
  • Mihui Kim

DOI
https://doi.org/10.3390/s21217367
Journal volume & issue
Vol. 21, no. 21
p. 7367

Abstract

Read online

Recently, artificial intelligence has been successfully used in fields, such as computer vision, voice, and big data analysis. However, various problems, such as security, privacy, and ethics, also occur owing to the development of artificial intelligence. One such problem are deepfakes. Deepfake is a compound word for deep learning and fake. It refers to a fake video created using artificial intelligence technology or the production process itself. Deepfakes can be exploited for political abuse, pornography, and fake information. This paper proposes a method to determine integrity by analyzing the computer vision features of digital content. The proposed method extracts the rate of change in the computer vision features of adjacent frames and then checks whether the video is manipulated. The test demonstrated the highest detection rate of 97% compared to the existing method or machine learning method. It also maintained the highest detection rate of 96%, even for the test that manipulates the matrix of the image to avoid the convolutional neural network detection method.

Keywords