Entropy (Dec 2016)

Entropy and Stability Analysis of Delayed Energy Supply–Demand Model

  • Jing Wang,
  • Fengshan Si,
  • Yuling Wang,
  • Shide Duan

DOI
https://doi.org/10.3390/e18120434
Journal volume & issue
Vol. 18, no. 12
p. 434

Abstract

Read online

In this paper, a four-dimensional model of energy supply–demand with two-delay is built. The interactions among energy demand of east China, energy supply of west China and the utilization of renewable energy in east China are delayed in this model. We discuss stability of the system affected by parameters and the existence of Hopf bifurcation at the equilibrium point from two aspects: single delay and two-delay. The stability and complexity of the system are demonstrated through bifurcation diagram, Poincare section plot, entropy diagram, etc. in numerical simulation. The simulation results show that the parameters beyond the stable region will cause the system to be unstable and increase the complexity of the system. At this point, because of energy supply–demand system fluctuations, it is difficult to formulate energy policies. Finally, the bifurcation control is realized successfully by the method of delayed feedback control. The results of bifurcation control simulation indicate that the system can return to stable state by adjusting the control parameter. In addition, we find that the bigger the value of the control parameter, the better the effect of the bifurcation control. The results of this paper can provide help for maintaining the stability of the system, which will be conducive to energy scheduling.

Keywords