The Scientific World Journal (Jan 2014)

An Enhanced Drought-Tolerant Method Using SA-Loaded PAMPS Polymer Materials Applied on Tobacco Pelleted Seeds

  • Yajing Guan,
  • Huawei Cui,
  • Wenguang Ma,
  • Yunye Zheng,
  • Yixin Tian,
  • Jin Hu

DOI
https://doi.org/10.1155/2014/752658
Journal volume & issue
Vol. 2014

Abstract

Read online

Drought is one of the most important stress factors limiting the seed industry and crop production. Present study was undertaken to create novel drought-resistant pelleted seeds using the combined materials with superabsorbent polymer, poly(2-acrylamide-2-methyl propane sulfonic acid) (PAMPS) hydrogel, and drought resistance agent, salicylic acid (SA). The optimized PAMPS hydrogel was obtained as the molar ratio of 2-acrylamido-2-methyl-propanesulfonic acid (AMPS) to potassium peroxydisulfate (KPS) and N, N′-methylene-bis-acrylamide (MBA) was 1 : 0.00046 : 0.00134. The hydrogel weight after swelling in deionized water for 24 h reached 4306 times its own dry weight. The water retention ratio (RR) of PAMPS was significantly higher as compared with the control. It could keep as high as 85.3% of original weight after 30 min at 110°C; even at 25°C for 40 d, the PAMPS still kept RR at 33.67%. PAMPS disintegration ratio increased gradually and reached around 30% after embedding in soil or activated sludge for 60 d. In addition, there were better seed germination performance and seedling growth in the pelleted treatments with SA-loaded PAMPS hydrogel under drought stress than control. It suggested that SA-loaded PAMPS hydrogel, a nontoxic superabsorbent polymer, could be used as an effective drought resistance material applied to tobacco pelleted seeds.