BMC Biomedical Engineering (Apr 2023)

Fourteen days free-living evaluation of an open-source algorithm for counting steps in healthy adults with a large variation in physical activity level

  • Ivar Holm,
  • Jonatan Fridolfsson,
  • Mats Börjesson,
  • Daniel Arvidsson

DOI
https://doi.org/10.1186/s42490-023-00071-9
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background The number of steps by an individual, has traditionally been assessed with a pedometer, but increasingly with an accelerometer. The ActiLife software (AL) is the most common way to process accelerometer data to steps, but it is not open source which could aid understanding of measurement errors. The aim of this study was to compare assessment of steps from the open-source algorithm part of the GGIR package and two closed algorithms, AL normal (n) and low frequency extension (lfe) algorithms to Yamax pedometer, as reference. Free-living in healthy adults with a wide range of activity level was studied. Results A total 46 participants divided by activity level into a low-medium active group and a high active group, wore both an accelerometer and a pedometer for 14 days. In total 614 complete days were analyzed. A significant correlation between Yamax and all three algorithms was shown but all comparisons were significantly different with paired t-tests except for ALn vs Yamax. The mean bias shows that ALn slightly overestimated steps in the low-medium active group and slightly underestimated steps in high active group. The mean percentage error (MAPE) was 17% and 9% respectively. The ALlfe overestimated steps by approximately 6700/day in both groups and the MAPE was 88% in the low-medium active group and 43% in the high active group. The open-source algorithm underestimated steps with a systematic error related to activity level. The MAPE was 28% in the low-medium active group and 48% in the high active group. Conclusion The open-source algorithm captures steps fairly well in low-medium active individuals when comparing with Yamax pedometer, but did not show satisfactory results in more active individuals, indicating that it must be modified before implemented in population research. The AL algorithm without the low frequency extension measures similar number of steps as Yamax in free-living and is a useful alternative before a valid open-source algorithm is available.

Keywords