Science and Technology of Advanced Materials (Jan 2013)

Creep behavior and in-depth microstructural characterization of dissimilar joints

  • F Kauffmann, T Klein, A Klenk and K Maile

Journal volume & issue
Vol. 14, no. 1
p. 014203

Abstract

Read online

The 700 °C power plants currently under development will utilize Ni-base alloys such as alloy 617 for components to be operated at temperatures >650 °C. Due to economic reasons for components or parts of components which are subjected to temperatures <650 °C, 2% Cr or 9–12% Cr steels is used, depending on the required mechanical properties. This makes the dissimilar joining of Ni-base alloys and Cr steels a necessity in these plants. Experimental investigations show that these joints have to be identified as weak points with regard to damage development under creep and creep-fatigue loading. The present investigation focuses on welds between the alloy 617 and 2% Cr steel. Under creep load the fracture occurs near the fusion line between the 2% Cr steel base metal and alloy 617 weld metal. To explain the reasons for this fracture location, the microstructure of this fusion line was investigated using TEM and FIB techniques after welding and after creep loading. The TEM investigations have shown a small zone in the weld metal near the fusion line exhibiting chromium depletion and clearly reduced amounts of chromium carbides, leading to a weakening of this zone.