Nanomaterials (Sep 2019)

Production of SnS<sub>2</sub> Nanostructure as Improved Light-Assisted Electrochemical Water Splitting

  • Haizeng Song,
  • Han Wu,
  • Yuan Gao,
  • Ka Wang,
  • Xin Su,
  • Shancheng Yan,
  • Yi Shi

DOI
https://doi.org/10.3390/nano9091244
Journal volume & issue
Vol. 9, no. 9
p. 1244

Abstract

Read online

Tin disulfide (SnS2) has gained a lot of interest in the field of converting solar energy into chemical fuels in light-assisted electrochemical water splitting due to its visible-light band gap and high electronic mobility. However, further decreasing the recombination rate of electron-hole pairs and increasing the density of active states at the valence band edge of the photoelectrodes were a critical problem. Here, we were successful in fabricating the super-thin SnS2 nanostructure by a hydrothermal and solution etching method. The super-thin SnS2 nanostructure as a photo-electrocatalytic material exhibited low overpotential of 0.25 V at the current density of −10 mA·cm−2 and the potential remained basically unchanged after 1000 cycles in an H2SO4 electrolyte solution, which was better than that of the SnS2 nanosheet and SnS/SnS2 heterojunction nanosheet. These results show the potential application of super-thin SnS2 nanostructure in electrochemical/photo-electrocatalytic field.

Keywords