Nature Communications (Nov 2021)

A deep learning approach for complex microstructure inference

  • Ali Riza Durmaz,
  • Martin Müller,
  • Bo Lei,
  • Akhil Thomas,
  • Dominik Britz,
  • Elizabeth A. Holm,
  • Chris Eberl,
  • Frank Mücklich,
  • Peter Gumbsch

DOI
https://doi.org/10.1038/s41467-021-26565-5
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 15

Abstract

Read online

Segmentation and classification of microstructures are required by quality control and materials development. The authors apply deep learning for the segmentation of complex phase steel microstructures, providing a bridge between experimental and computational methods for materials analysis.