Journal of Applied Science and Engineering (Sep 2022)

Produced Water Treatment Using The Residue Catalytic Cracking (RCC) Spent Catalyst As Ceramic Filter Material Integrated With Reverse Osmosis (RO) System

  • Agrivina Abel Novira,
  • Subriyer Nasir,
  • Fitri Hadiah

DOI
https://doi.org/10.6180/jase.202303_26(3).0011
Journal volume & issue
Vol. 26, no. 3
pp. 403 – 411

Abstract

Read online

A cylindrical tube shape ceramic filter made from a mixture of the residue catalytic cracking (RCC) unit spent catalyst, natural clay, and gadung (Dioscorea hispida Dennst) starch was employed for produced water (PW) treatment. The parameter of produced water characterized were total dissolved solids (TDS), phenol, and barium concentration. Two types of ceramic filters were made using activated, and non-activated RCC spent catalysts in various compositions. Produced water transferred to the ceramic filter at operating times of 30, 60, 90 min, respectively, and applied pressures into the ceramic filter were set as 2.3, 2.5, and 2.7 kg/cm2 followed by a reverse osmosis (RO) membrane. The results showed that at contact time 90 min and applied pressure 2.7kg/cm2 ceramic filter D (25% activated RCC, 70% natural clay, 5% gadung starch) could reduce TDS, phenol, and barium by 43.21%, 68.69%, 26.21%, respectively and followed by 86.68% TDS, 82.40% phenol, and 93.33% barium in RO permeate. Different results were obtained using ceramic filter B (70% activated RCC spent catalyst, 25% natural clay, and 5% gadung starch) could reduce TDS, phenol, and barium as 34.11%, 71.84%, and 38.30%, respectively and in RO permeates were 67.93%, 91.77%, and 82.92%, respectively. From these results, activation of the RCC spent catalyst will increase the total removal of TDS, phenol, and barium from PW. The ceramic filter made from the activated RCC spent catalyst could be a pretreatment before RO processes.

Keywords