Nature Communications (Mar 2024)
Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection
Abstract
Abstract Metal-halide perovskite thin monocrystals featuring efficient carrier collection and transport capabilities are well suited for radiation detectors, yet their growth in a generic, well-controlled manner remains challenging. Here, we reveal that mass transfer is one major limiting factor during solution growth of perovskite thin monocrystals. A general approach is developed to overcome synthetic limitation by using a high solute flux system, in which mass diffusion coefficient is improved from 1.7×10–10 to 5.4×10–10 m2 s–1 by suppressing monomer aggregation. The generality of this approach is validated by the synthesis of 29 types of perovskite thin monocrystals at 40–90 °C with the growth velocity up to 27.2 μm min–1. The as-grown perovskite monocrystals deliver a high X-ray sensitivity of 1.74×105 µC Gy−1 cm−2 without applied bias. The findings regarding limited mass transfer and high-flux crystallization are crucial towards advancing the preparation and application of perovskite thin monocrystals.