Biotechnology for Biofuels (Jun 2019)

Cellulase recycling in high-solids enzymatic hydrolysis of pretreated empty fruit bunches

  • Jae Kyun Kim,
  • Jungwoo Yang,
  • So Young Park,
  • Ju-Hyun Yu,
  • Kyoung Heon Kim

DOI
https://doi.org/10.1186/s13068-019-1476-x
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background The lignocellulosic biomass feedstocks such as empty fruit bunches (EFBs) prove to be potential renewable resources owing to their abundance, low prices, and high carbohydrate contents. Generally, the conversion of lignocellulosic biomass into chemicals, fuels, and materials mainly includes pretreatment, enzymatic hydrolysis, fermentation, and recovery of final products. To increase the economic viability of such processes, the cost of cellulase production and enzymatic hydrolysis should be reduced. For this, recycling cellulase can be considered for reducing the saccharification cost of lignocellulose. In this study, cellulase recycling for high-solids enzymatic hydrolysis (i.e., 20%) was evaluated in saccharification of hydrothermally-pretreated EFBs. Results High-solids (20%) enzymatic hydrolysis of hydrothermally-pretreated empty fruit bunches with 40 FPU of Cellic CTec3/g glucan was carried out for cellulase recycling. In the second round of hydrolysis using a recycled enzyme, only 19.3% of glucose yield was obtained. The most important limiting factors for cellulase recycling of this study were identified as the enzyme inhibition by glucose, the loss of enzyme activities, and the non-productive binding of enzymes to insoluble biomass solids. To overcome these limitations, PEG was added prior to the first-round hydrolysis to reduce non-productive enzyme binding, glucose was removed from the enzyme fraction to be reused in the second-round hydrolysis, and EFB solids from the first-round hydrolysis were used in the second-round hydrolysis. These three additional measures with cellulase recycling resulted in a 3.5 times higher glucose yield (i.e., 68.0%) at the second round than that of the control, the second-round hydrolysis with cellulase recycling but without these measures. Conclusions Because of the high obstacles found in this study in achieving high saccharification yields in the high-solids saccharification of high-lignin lignocellulose with cellulase recycling, effective measures for improving enzymatic saccharification yields need to be accompanied with cellulase recycling.

Keywords