Catalysts (Oct 2022)

Preparation and Photocatalytic Activities of TiO<sub>2</sub>-Based Composite Catalysts

  • Huaitao Yang,
  • Beibei Yang,
  • Wei Chen,
  • Junjiao Yang

DOI
https://doi.org/10.3390/catal12101263
Journal volume & issue
Vol. 12, no. 10
p. 1263

Abstract

Read online

While modern industry has contributed to the prosperity of an increasingly urbanized society, it has also led to serious pollution problems, with discharged wastewater and exhaust gases causing significant environmental harm. Titanium dioxide (TiO2), which is an excellent photocatalyst, has received extensive attention because it is inexpensive and able to photocatalytically degrade pollutants in an environmentally friendly manner. TiO2 has many advantages, including high chemical stability, low toxicity, low operating costs, and environmental friendliness. TiO2 is an N-order semiconductor material with a bandgap of 3.2 eV. Only when the wavelength of ultraviolet light is less than or equal to 387.5 nm, the valence band electrons can obtain the energy of the photon and pass through the conduction band to form photoelectrons, meanwhile the valence band forms a photogenerated hole. And light in other wavelength regions does not excite this photogenerated electrons. The most common methods used to improve the photocatalytic efficiency of TiO2 involve increasing its photoresponse range and reducing photogenerated-carrier coupling. The morphology, size, and structure of a heterojunction can be altered through element doping, leading to improved photocatalytic efficiency. Mainstream methods for preparing TiO2 are reviewed in this paper, with several excellent preparation schemes for improving the photocatalytic efficiency of TiO2 introduced. TiO2 is mainly prepared using sol-gel, solvothermal, hydrothermal, anodic oxidation, microwave-assisted, CVD and PVD methods, and TiO2 nanoparticles with excellent photocatalytic properties can also be prepared. Ti-containing materials are widely used to purify harmful gases, as well as contaminants from building materials, coatings, and daily necessities. Therefore, the preparation and applications of titanium materials have become globally popular research topics.

Keywords