Processing and Application of Ceramics (Sep 2016)

Effect of Nb doping on sintering and dielectric properties of PZT ceramics

  • Ali Mirzaei,
  • Maryam Bonyani,
  • Shahab Torkian

DOI
https://doi.org/10.2298/PAC1603175M
Journal volume & issue
Vol. 10, no. 3
pp. 175 – 182

Abstract

Read online

The extensive use of piezoelectric ceramics such as lead zirconate titanate (PZT) in different applications became possible with the development of donor or acceptor dopants. Therefore, studies on the effect of dopants on the properties of PZT ceramics are highly demanded. In this study undoped and 2.4 mol% Nb-doped PZT (PZTN) powders were successfully obtained by a solid-state reaction and calcination at 850 °C for 2 h. Crystallinity and phase formation of the prepared powders were studied using X-ray diffraction (XRD). In order to study morphology of powders, scanning electron microscopy (SEM) was performed. The crystalline PZT and Nb-doped PZT powders were pelleted into discs and sintered at 1100, 1150 and 1200 °C, with a heating rate of 10 °C/min, and holding time of 1–6 h to find the optimum combination of temperature and time to produce high density ceramics. Microstructural characterization was conducted on the fractured ceramic surfaces using SEM. Density measurements showed that maximal density of 95% of the theoretical density was achieved after sintering of PZT and PZTN ceramics at 1200 °C for 2 h and 4 h, respectively. However, the results of dielectric measurements showed that PZTN ceramics have higher relative permittivity (εr ∼17960) with lower Curie temperature (∼358 °C) relative to PZT (εr = 16000 at ∼363 °C) as a result of fine PZTN structure as well as presence of vacancies. In addition, dielectric loss (at 1 kHz) of PZT and PZTN ceramics with 95% theoretical density was 0.0087 and 0.02, respectively. The higher dielectric loss in PZTN was due to easier domain wall motions in PZTN ceramics.

Keywords