Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
Mark Löbel
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
Department of Medicine, Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, United States; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
The specificity of tyrosine kinases is attributed predominantly to localization effects dictated by non-catalytic domains. We developed a method to profile the specificities of tyrosine kinases by combining bacterial surface-display of peptide libraries with next-generation sequencing. Using this, we showed that the tyrosine kinase ZAP-70, which is critical for T cell signaling, discriminates substrates through an electrostatic selection mechanism encoded within its catalytic domain (Shah et al., 2016). Here, we expand this high-throughput platform to analyze the intrinsic specificity of any tyrosine kinase domain against thousands of peptides derived from human tyrosine phosphorylation sites. Using this approach, we find a difference in the electrostatic recognition of substrates between the closely related Src-family kinases Lck and c-Src. This divergence likely reflects the specialization of Lck to act in concert with ZAP-70 in T cell signaling. These results point to the importance of direct recognition at the kinase active site in fine-tuning specificity.