Symmetry (Jul 2020)

Research and Application of Filtering Grid Scale in Detached Eddy Simulation Model

  • Liang Dong,
  • Chao Guo,
  • Ying Wang,
  • Houlin Liu,
  • Cui Dai

DOI
https://doi.org/10.3390/sym12081252
Journal volume & issue
Vol. 12, no. 8
p. 1252

Abstract

Read online

The existing definition method of filter grid scale in a Detached Eddy Simulation (DES) hybrid model is unreasonable, which will lead to the unreasonable trigger of a boundary layer large eddy simulation and reduce computational efficiency. In view of this problem, the filter grid scale is discussed in this paper. The 90° square curved elbow is selected as the research object. The effects of three grid definition methods: geometric mean (ΔGM), arithmetic mean (ΔAM) and quadratic mean (ΔQM) on the simulation results of the DES model are compared, and the velocity distribution of the flow cross section and the distribution of the flow pressure coefficient on the outer arc surface are compared with the experimental results of Taylor. The results show that the order of the three definition methods is ΔGM≤ΔAM≤ΔQM. Meanwhile, within 30° ΔAM and ΔQM are closer to the experiment in general. However, when θ > 60°, the value of ΔQM is slightly closer to the experimental result than ΔAM. ΔQM is more suitable for calculating the internal flow in a curved elbow than the other two methods.

Keywords