N-type graphene fabricated by exposure to hydrogen gas has been previously studied. Based on this property of graphene, herein, we demonstrate local doping in single-layer graphene using selective adsorption of dissociative hydrogen at 350 K. A graphene field effect transistor was produced covered with PMMA on half of the graphene region. The charge neutrality point of the PMMA-window region shifted to a negative gate voltage (VG) region prominently compared with that of the PMMA-covered region. Consequently, a single graphene p-n junction was obtained by measuring the VG-dependent resistance of the whole graphene region. This method presents opportunities for developing and controlling the electronic structure of graphene and device applications.