Scientia in Educatione (Jan 2021)
Types of Generalization Made by Pupils Aged 12–13 and by Their Future Mathematics Teachers
Abstract
This paper seeks to establish what kind of arguments pupils (aged 12–13) use and how they make their assumptions and generalizations. Our research also explored the same phenomenon in the case of graduate mathematics teachers studying for their masters’ degrees in our faculty at that time. The main focus was on algebraic reasoning, in particular pattern exploring and expressing regularities in numbers. In this paper, we introduce the necessary concepts and notations used in the study, briefly characterize the theoretical levels of cognitive development and terms from the Theory of Didactical Situations. We set out to answer three research questions. To collect the research data, we worked with a group of 32 pupils aged 12–13 and 19 university students (all prospective mathematics teachers in the first year of their master’s). We assigned them two flexible tasks to and asked them to explain their findings/formulas. Besides that, we collected additional (supportive) data using a short questionnaire. The supporting data concerned their opinions on the tasks and the explanations. The results and limited scope of the research indicated what should be changed in preparing future mathematics teachers. These changes could positively influence the pupils’ strategies of solving not only flexible tasks but also their ability to generalize.