Green Processing and Synthesis (Apr 2023)
Gum tragacanth-mediated synthesis of metal nanoparticles, characterization, and their applications as a bactericide, catalyst, antioxidant, and peroxidase mimic
Abstract
Among biogenic methods employed for synthesizing various nanoparticles (NPs), gum tragacanth (TGC)-mediated NP production is important. The gum TGC not only qualifies the principles of green chemistry but also embraces unique qualities. In this perspective, the current review concentrates on the composition, uses, and exploitation of gum towards synthesizing metal NP of silver (Ag), gold (Au), palladium (Pd), platinum (Pt), and their characterization (UV-visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy). In addition, applications of synthesized NP as a bactericide, catalyst, antioxidant, and peroxidase mimic are emphasized. Ag NP (13 nm) showed antibacterial action against Gram-negative and Gram-positive bacteria at 2–12 μg‧mL−1. The exploitation of Ag NP as a bactericide makes it a candidate of choice for medicinal and pharmacological applications. The catalytic activity of Pd NP (14 nm) demonstrated borohydride reduction of methylene blue. The gum reduced/capped metal and metal oxide NP serve as redox and photocatalysts for the remediation of toxic pigments and dyes in industrial effluents. At 15 μg‧mL−1, Pd NP exhibited 1,1-diphenyl-2-picrylhydrazyle radical scavenging activity (95.8%) and served as an artificial enzyme mimic for colorimetric sensing of hydrogen peroxide. The industrial applications of other TGC-based nanocomposites, such as heavy metal sorption, wound dressing, drug carrier, tissue engineering, etc., are mentioned.
Keywords