Communications Chemistry (Sep 2023)

Comparative analysis of drug-salt-polymer interactions by experiment and molecular simulation improves biopharmaceutical performance

  • Sumit Mukesh,
  • Goutam Mukherjee,
  • Ridhima Singh,
  • Nathan Steenbuck,
  • Carolina Demidova,
  • Prachi Joshi,
  • Abhay T. Sangamwar,
  • Rebecca C. Wade

DOI
https://doi.org/10.1038/s42004-023-01006-0
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 18

Abstract

Read online

Abstract The propensity of poorly water-soluble drugs to aggregate at supersaturation impedes their bioavailability. Supersaturated amorphous drug-salt-polymer systems provide an emergent approach to this problem. However, the effects of polymers on drug-drug interactions in aqueous phase are largely unexplored and it is unclear how to choose an optimal salt-polymer combination for a particular drug. Here, we describe a comparative experimental and computational characterization of amorphous solid dispersions containing the drug celecoxib, and a polymer, polyvinylpyrrolidone vinyl acetate (PVP-VA) or hydroxypropyl methylcellulose acetate succinate, with or without Na+/K+ salts. Classical models for drug-polymer interactions fail to identify the best drug-salt-polymer combination. In contrast, more stable drug-polymer interaction energies computed from molecular dynamics simulations correlate with prolonged stability of supersaturated amorphous drug-salt-polymer systems, along with better dissolution and pharmacokinetic profiles. The celecoxib-salt-PVP-VA formulations exhibit excellent biopharmaceutical performance, offering the prospect of a low-dosage regimen for this widely used anti-inflammatory, thereby increasing cost-effectiveness, and reducing side-effects.