Arabian Journal of Chemistry (Feb 2017)

Development of an in situ solvent formation microextraction and preconcentration method based on ionic liquids for the determination of trace cobalt (II) in water samples by flame atomic absorption spectrometry

  • Mohammad Reza Jamali,
  • Bahram Soleimani,
  • Reyhaneh Rahnama,
  • Seyed Hojjat Allah Rahimi

DOI
https://doi.org/10.1016/j.arabjc.2012.08.004
Journal volume & issue
Vol. 10, no. S1
pp. S321 – S327

Abstract

Read online

A simple in situ solvent formation microextraction (ISFME) methodology based on the application of ionic liquid (IL) as an extractant solvent and sodium hexafluorophosphate (NaPF6) as an ion-pairing agent was proposed for the preconcentration of the trace levels of cobalt ions. In this method cobalt was complexed with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) and extracted into an ionic liquid phase. After phase separation, the enriched analyte in the final solution is determined by flame atomic absorption spectrometry (FAAS). Some effective factors that influence the microextraction efficiency were investigated and optimized. Under the optimum experimental conditions, the limit of detection and the enrichment factor were 0.97 μg L−1 and 50, respectively. The relative standard deviation (R.S.D.) was obtained as 2.4%. The proposed method was assessed through the analysis of certified reference water and recovery experiments.

Keywords