PeerJ Computer Science (Nov 2023)

Scheduling algorithms for data-protection based on security-classification constraints to data-dissemination

  • Mohammad Mahmood Otoom,
  • Mahdi Jemmali,
  • Wael M. Khedr,
  • Akram Y. Sarhan,
  • Imen Achour,
  • Ibrahim Alsaduni,
  • Abdullah Bajahzar,
  • Mohamed Nazih Omri

DOI
https://doi.org/10.7717/peerj-cs.1543
Journal volume & issue
Vol. 9
p. e1543

Abstract

Read online Read online

Communication networks have played a vital role in changing people’s life. However, the rapid advancement in digital technologies has presented many drawbacks of the current inter-networking technology. Data leakages severely threaten information privacy and security and can jeopardize individual and public life. This research investigates the creation of a private network model that can decrease the number of data leakages. A two-router private network model is designed. This model uses two routers to manage the classification level of the transmitting network packets. In addition, various algorithmic techniques are proposed. These techniques solve a scheduling problem. This problem is to schedule packets through routers under a security classification level constraint. This constraint is the non-permission of the transmission of two packets that belongs to the same security classification level. These techniques are the dispatching rule and grouping method. The studied problem is an NP-hard. Eight algorithms are proposed to minimize the total transmission time. A comparison between the proposed algorithms and those in the literature is discussed to show the performance of the proposed scheme through experimentation. Four classes of instances are generated. For these classes, the experimental results show that the best-proposed algorithm is the best-classification groups’ algorithm in 89.1% of cases and an average gap of 0.001. In addition, a benchmark of instances is used based on a real dataset. This real dataset shows that the best-proposed algorithm is the best-classification groups’ algorithm in 88.6% of cases and an average gap of less than 0.001.

Keywords