Atmosphere (Oct 2021)

A GPU-Accelerated Radiation Transfer Model Using the Lattice Boltzmann Method

  • Yansen Wang,
  • Xiping Zeng,
  • Jonathan Decker

DOI
https://doi.org/10.3390/atmos12101316
Journal volume & issue
Vol. 12, no. 10
p. 1316

Abstract

Read online

A prototype of a three-dimensional (3-D) radiation model is developed using the lattice Boltzmann method (LBM) and implemented on a graphical processing unit (GPU) to accelerate the model’s computational speed. This radiative transfer-lattice Boltzmann model (RT-LBM) results from a discretization of the radiative transfer equation in time, space, and solid angle. The collision and streaming computation algorithm, widely used in LBM for fluid flow modeling, is applied to speed up the RT-LBM computation on the GPU platform. The isotropic scattering is assumed in this study. The accuracy is evaluated using Monte Carlo method (MCM) simulations, showing RT-LBM is quite accurate when typical atmospheric coefficients of scattering and absorption are used. RT-LBM runs about 10 times faster than the MCM in a same CPU. When implemented on a NVidia Tesla V100 GPU in simulation with a large number of computation grid points, for example, RT-LBM runs ~120 times faster than running on a single CPU. The test results indicate RT-LBM is an accurate and fast model and is viable for simulating radiative transfer in the atmosphere with ranges for the isotropic atmosphere radiative parameters of albedo scattering (0.1~0.9) and optical depth (0.1~12).

Keywords