Journal of Fungi (May 2023)

Wild <i>Rosa</i> Endophyte M7SB41-Mediated Host Plant’s Powdery Mildew Resistance

  • Yi Zhao,
  • Wenqin Mao,
  • Wenting Tang,
  • Marcos Antônio Soares,
  • Haiyan Li

DOI
https://doi.org/10.3390/jof9060620
Journal volume & issue
Vol. 9, no. 6
p. 620

Abstract

Read online

Our previous studies indicated that endophyte M7SB41 (Seimatosporium sp.) can significantly enhance host plants powdery mildew (PM) resistance. To recover the mechanisms, differentially expressed genes (DEGs) were compared between E+ (endophte-inoculated) and E− (endophyte-free) plants by transcriptomics. A total of 4094, 1200 and 2319 DEGs between E+ and E− were identified at 0, 24, and 72 h after plants had been infected with PM pathogen Golovinomyces cichoracearum, respectively. Gene expression pattern analysis displayed a considerable difference and temporality in response to PM stress between the two groups. Transcriptional profiling analysis revealed that M7SB41 induced plant resistance to PM through Ca2+ signaling, salicylic acid (SA) signaling, and the phenylpropanoid biosynthesis pathway. In particular, we investigated the role and the timing of the SA and jasmonic acid (JA)-regulated defensive pathways. Both transcriptomes and pot experiments showed that SA-signaling may play a prominent role in PM resistance conferred by M7SB41. Additionally, the colonization of M7SB41 could effectively increase the activities and the expression of defense-related enzymes under PM pathogen stress. Meanwhile, our study revealed reliable candidate genes from TGA (TGACG motif-binding factor), WRKY, and pathogenesis-related genes related to M7SB41-mediate resistance. These findings offer a novel insight into the mechanisms of endophytes in activating plant defense responses.

Keywords