Applied Sciences (Mar 2020)

Stable Sparse Model with Non-Tight Frame

  • Min Zhang,
  • Yunhui Shi,
  • Na Qi,
  • Baocai Yin

DOI
https://doi.org/10.3390/app10051771
Journal volume & issue
Vol. 10, no. 5
p. 1771

Abstract

Read online

Overcomplete representation is attracting interest in image restoration due to its potential to generate sparse representations of signals. However, the problem of seeking sparse representation must be unstable in the presence of noise. Restricted Isometry Property (RIP), playing a crucial role in providing stable sparse representation, has been ignored in the existing sparse models as it is hard to integrate into the conventional sparse models as a regularizer. In this paper, we propose a stable sparse model with non-tight frame (SSM-NTF) via applying the corresponding frame condition to approximate RIP. Our SSM-NTF model takes into account the advantage of the traditional sparse model, and meanwhile contains RIP and closed-form expression of sparse coefficients which ensure stable recovery. Moreover, benefitting from the pair-wise of the non-tight frame (the original frame and its dual frame), our SSM-NTF model combines a synthesis sparse system and an analysis sparse system. By enforcing the frame bounds and applying a second-order truncated series to approximate the inverse frame operator, we formulate a dictionary pair (frame pair) learning model along with a two-phase iterative algorithm. Extensive experimental results on image restoration tasks such as denoising, super resolution and inpainting show that our proposed SSM-NTF achieves superior recovery performance in terms of both subjective and objective quality.

Keywords