Journal of Cachexia, Sarcopenia and Muscle (Apr 2022)

Pharmacological hypogonadism impairs molecular transducers of exercise‐induced muscle growth in humans

  • Nima Gharahdaghi,
  • Supreeth Rudrappa,
  • Matthew S. Brook,
  • Wesam Farrash,
  • Iskandar Idris,
  • Muhammad Hariz Abdul Aziz,
  • Fawzi Kadi,
  • Konstantinos Papaioannou,
  • Bethan E. Phillips,
  • Tanvir Sian,
  • Philip J. Herrod,
  • Daniel J. Wilkinson,
  • Nathaniel J. Szewczyk,
  • Kenneth Smith,
  • Philip J. Atherton

DOI
https://doi.org/10.1002/jcsm.12843
Journal volume & issue
Vol. 13, no. 2
pp. 1134 – 1150

Abstract

Read online

Abstract Background The relative role of skeletal muscle mechano‐transduction in comparison with systemic hormones, such as testosterone (T), in regulating hypertrophic responses to exercise is contentious. We investigated the mechanistic effects of chemical endogenous T depletion adjuvant to 6 weeks of resistance exercise training (RET) on muscle mass, function, myogenic regulatory factors, and muscle anabolic signalling in younger men. Methods Non‐hypogonadal men (n = 16; 18–30 years) were randomized in a double‐blinded fashion to receive placebo (P, saline n = 8) or the GnRH analogue, Goserelin [Zoladex (Z), 3.6 mg, n = 8], injections, before 6 weeks of supervised whole‐body RET. Participants underwent dual‐energy X‐ray absorptiometry (DXA), ultrasound of m. vastus lateralis (VL), and VL biopsies for assessment of cumulative muscle protein synthesis (MPS), myogenic gene expression, and anabolic signalling pathway responses. Results Zoladex suppressed endogenous T to within the hypogonadal range and was well tolerated; suppression was associated with blunted fat free mass [Z: 55.4 ± 2.8 to 55.8 ± 3.1 kg, P = 0.61 vs. P: 55.9 ± 1.7 to 57.4 ± 1.7 kg, P = 0.006, effect size (ES) = 0.31], composite strength (Z: 40 ± 2.3% vs. P: 49.8 ± 3.3%, P = 0.03, ES = 1.4), and muscle thickness (Z: 2.7 ± 0.4 to 2.69 ± 0.36 cm, P > 0.99 vs. P: 2.74 ± 0.32 to 2.91 ± 0.32 cm, P 0.99 vs. P: 1.9 fold, P 0.99 vs. P: 4.7 fold, P = 0.0005, ES = 0.68; myogenin: Z: 1.3 fold, P > 0.99 vs. P: 2.7 fold, P = 0.002, ES = 0.72), RNA/DNA (Z: 0.47 ± 0.03 to 0.53 ± 0.03, P = 0.31 vs. P: 0.50 ± 0.01 to 0.64 ± 0.04, P = 0.003, ES = 0.72), and RNA/ASP (Z: 5.8 ± 0.4 to 6.8 ± 0.5, P > 0.99 vs. P: 6.5 ± 0.2 to 8.9 ± 1.1, P = 0.008, ES = 0.63) ratios, as well as acute RET‐induced phosphorylation of growth signalling proteins (e.g. AKTser473: Z: 2.74 ± 0.6, P = 0.2 vs. P: 5.5 ± 1.1 fold change, P 0.99 vs. P: 3.6 ± 1 fold change, P = 0.002, ES = 0.53). Both MPS (Z: 1.45 ± 0.11 to 1.50 ± 0.06%·day−1, P = 0.99 vs. P: 1.5 ± 0.12 to 2.0 ± 0.15%·day−1, P = 0.01, ES = 0.97) and (extrapolated) muscle protein breakdown (Z: 93.16 ± 7.8 vs. P: 129.1 ± 13.8 g·day−1, P = 0.04, ES = 0.92) were reduced with hypogonadism result in lower net protein turnover (3.9 ± 1.1 vs. 1.2 ± 1.1 g·day−1, P = 0.04, ES = 0.95). Conclusions We conclude that endogenous T sufficiency has a central role in the up‐regulation of molecular transducers of RET‐induced muscle hypertrophy in humans that cannot be overcome by muscle mechano‐transduction alone.

Keywords