Frontiers in Physiology (Apr 2022)
Image-Based Experimental Measurement Techniques to Characterize Velocity Fields in Blood Microflows
Abstract
Predicting blood microflow in both simple and complex geometries is challenging because of the composition and behavior of the blood at microscale. However, characterization of the velocity in microchannels is the key for gaining insights into cellular interactions at the microscale, mechanisms of diseases, and efficacy of therapeutic solutions. Image-based measurement techniques are a subset of methods for measuring the local flow velocity that typically utilize tracer particles for flow visualization. In the most basic form, a high-speed camera and microscope setup are the only requirements for data acquisition; however, the development of image processing algorithms and equipment has made current image-based techniques more sophisticated. This mini review aims to provide a succinct and accessible overview of image-based experimental measurement techniques to characterize the velocity field of blood microflow. The following techniques are introduced: cell tracking velocimetry, kymographs, micro-particle velocimetry, and dual-slit photometry as entry techniques for measuring various velocity fields either in vivo or in vitro.
Keywords