iScience (Nov 2023)

Memory ability and retention performance relate differentially to sleep depth and spindle type

  • Fereshteh Dehnavi,
  • Ping Chai Koo-Poeggel,
  • Maryam Ghorbani,
  • Lisa Marshall

Journal volume & issue
Vol. 26, no. 11
p. 108154

Abstract

Read online

Summary: Temporal interactions between non-rapid eye movement (NREM) sleep rhythms especially the coupling between cortical slow oscillations (SO, ∼1 Hz) and thalamic spindles (∼12 Hz) have been proposed to contribute to multi-regional interactions crucial for memory processing and cognitive ability. We investigated relationships between NREM sleep depth, sleep spindles and SO-spindle coupling regarding memory ability and memory consolidation in healthy humans. Findings underscore the functional relevance of spindle dynamics (slow versus fast), SO-phase, and most importantly NREM sleep depth for cognitive processing. Cross-frequency coupling analyses demonstrated stronger precise temporal coordination of slow spindles to SO down-state in N2 for subjects with higher general memory ability. A GLM model underscored this relationship, and furthermore that fast spindle properties were predictive of overnight memory consolidation. Our results suggest cognitive fingerprints dependent on conjoint fine-tuned SO-spindle temporal coupling, spindle properties, and brain sleep state.

Keywords