Metals (Feb 2022)

Surface Hardening Behavior of Advanced Gear Steel C61 by a Novel Solid-Solution Carburizing Process

  • Yanzhang Dai,
  • Lixia Kang,
  • Shun Han,
  • Yong Li,
  • Yu Liu,
  • Simin Lei,
  • Chunxu Wang

DOI
https://doi.org/10.3390/met12030379
Journal volume & issue
Vol. 12, no. 3
p. 379

Abstract

Read online

During vacuum carburizing, coarse reticulated carbides tend to precipitate along grain boundaries due to high-carbon-potential conditions. This phenomenon is often one of the main factors in the failure of conventional gear steels. In this paper, a novel solid-solution carburizing process was proposed to achieve nano-carbide formation in the surface of the carburizing layer, and the conventional carburizing process and material thermodynamic calculations were combined to study the carburized layer by changing the parameters of the carburizing process, and to optimize the microstructure and properties of the carburized layer. The results showed that the high carbon potential or the long-time boost carburizing process could easily cause the enrichment of many carbon atoms in the traditional carburization, thus forming a carbide network and decreasing the carburization efficiency. The minor increase in large-sized M7C3 carbides did not significantly improve the surface hardness and wear resistance. However, the presence of small and dispersed M2C carbides was the main factor in improving the microhardness and mechanical properties. The novel solid-solution carburizing process could improve the carburizing efficiency and transform reticulated carbides into nano-dispersed M2C carbides. The surface carbon content and microhardness of 1.07% and 875 HV, respectively, increased 17.7 and 2.4% compared to conventional carburizing processes at 1100 °C. On the other hand, the surface’s ultimate tensile strength was found to be 1900 MPa by mini-tensile testing, and the core had a good match of strength and toughness. It was concluded that the novel solid-solution carburizing process could dissolve the carbon network and thus effectively increase the surface carbon content, achieving fully nanosized carbide on the surface. Modifying the size, morphology, and distribution of the nano-M2C carbides dispersed within the lath-martensite after tempering the test steel was found to be the main factor in improving the mechanical properties.

Keywords