Algorithms (Aug 2022)

Adversarial Training Methods for Deep Learning: A Systematic Review

  • Weimin Zhao,
  • Sanaa Alwidian,
  • Qusay H. Mahmoud

DOI
https://doi.org/10.3390/a15080283
Journal volume & issue
Vol. 15, no. 8
p. 283

Abstract

Read online

Deep neural networks are exposed to the risk of adversarial attacks via the fast gradient sign method (FGSM), projected gradient descent (PGD) attacks, and other attack algorithms. Adversarial training is one of the methods used to defend against the threat of adversarial attacks. It is a training schema that utilizes an alternative objective function to provide model generalization for both adversarial data and clean data. In this systematic review, we focus particularly on adversarial training as a method of improving the defensive capacities and robustness of machine learning models. Specifically, we focus on adversarial sample accessibility through adversarial sample generation methods. The purpose of this systematic review is to survey state-of-the-art adversarial training and robust optimization methods to identify the research gaps within this field of applications. The literature search was conducted using Engineering Village (Engineering Village is an engineering literature search tool, which provides access to 14 engineering literature and patent databases), where we collected 238 related papers. The papers were filtered according to defined inclusion and exclusion criteria, and information was extracted from these papers according to a defined strategy. A total of 78 papers published between 2016 and 2021 were selected. Data were extracted and categorized using a defined strategy, and bar plots and comparison tables were used to show the data distribution. The findings of this review indicate that there are limitations to adversarial training methods and robust optimization. The most common problems are related to data generalization and overfitting.

Keywords