Scientific Reports (Apr 2024)

Comparative transcriptome analysis of longissimus dorsi muscle reveal potential genes affecting meat trait in Chinese indigenous Xiang pig

  • Wei Wang,
  • Dan Wang,
  • Xinyi Zhang,
  • Xiaoli Liu,
  • Xi Niu,
  • Sheng Li,
  • Shihui Huang,
  • Xueqin Ran,
  • Jiafu Wang

DOI
https://doi.org/10.1038/s41598-024-58971-2
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 19

Abstract

Read online

Abstract In this study, we compared the transcriptome of longissimus dorsi muscle between Guizhou Xiang pigs (XP) and Western commercial Large White pigs (LW), which show diffirent meat quality between them. In terms of meat quality traits, the pH 45 min, color score, backfat thickness, and intramuscular fat (IMF) content were higher in Xiang pigs than in Large White pigs (P < 0.01), while the drip loss, lean meat percentage, shear force, and longissimus dorsi muscle area of Xiang pigs were lower than that of Large White pigs (P < 0.01). Nutrients such as monounsaturated fatty acid (MUFA), total amino acids (TAA), delicious amino acids (DAA) and essential amino acids (EAA) in Xiang pigs were higher than that in Large White pigs, and the proportion of polyunsaturated fatty acid (PUFA) of Xiang pigs was significantly lower than Large White pigs (P < 0.01). Transcriptome analysis identified 163 up-regulated genes and 88 genes down-regulated in Xiang pigs longissimus dorsi muscle. Combined with the correlation analysis and quantitative trait locis (QTLs) affecting meat quality, a total of 227 DEGs were screened to be significantly associated with meat quality values. Enrichment analysis indicated that numerous members of genes were gathered in muscle development, adipogenesis, amino acid metabolism, fatty acid metabolism and synthesis. Of those, 29 genes were identified to be hub genes that might be related with the meat quality of Xiang pig, such as MYOD1, ACTB, ASNS, FOXO1, ARG2, SLC2A4, PLIN2, and SCD. Thus, we screened and identified the potential functional genes for the formation of meat quality in Xiang pigs, which provides a corresponding theoretical basis for the study of the molecular regulatory mechanism of pork quality and the improvement of pork quality.