Remote Sensing (Nov 2019)

New Results from Strapdown Airborne Gravimetry Using Temperature Stabilisation

  • Tim E. Jensen,
  • Arne V. Olesen,
  • Rene Forsberg,
  • Per-Anders Olsson,
  • Örjan Josefsson

DOI
https://doi.org/10.3390/rs11222682
Journal volume & issue
Vol. 11, no. 22
p. 2682

Abstract

Read online

In recent years, the use of a strapdown Inertial Measurement Unit (IMU) for airborne gravimetry has proven itself to be an accurate and resilient measurement system, improving the operational flexibility. The main concern is erroneous long-wavelength information in the resulting estimates, which is suspected to originate from uncompensated long-term drift of the accelerometers, probably originating from temperature variation. For this reason, iMAR navigation has designed a temperature stabilisation box, which allows for temperature stabilisation of their IMU systems. On a regional airborne gravity survey over the Kattegat Sea between Denmark and Sweden, such a temperature stabilised strapdown IMU was operated alongside a traditional spring-type platform-stabilised gravity system from ZLS. An analysis of the difference in gravity estimates at cross-over locations yielded a mean value of −0.3 mGal for the iMAR system with an indicated accuracy of 1.0 mGal. The temperature stabilisation unit therefore effectively limits the accelerometer drift and improves the long-wavelength information. However, a straightforward merging approach, adjusting the line-based mean values of the iMAR estimates to match that of the ZLS estimates, improved the accuracy to 0.8 mGal. This indicates that the long-wavelength information of the stabilised-platform system is still superior to that of the strapdown system.

Keywords