Nature Communications (May 2025)
Synthesis of hexagonal boron arsenide nanosheets for low-power consumption flexible memristors
Abstract
Abstract Boron arsenide has recently attracted significant attention for its thermal and electronic properties. However, its lengthy growth process and bulk structure limit its application in advanced semiconductor systems. In this study, we introduce a method for synthesizing ultrathin crystalline hexagonal boron arsenide (h-BAs) nanosheets in large quantities via an in-situ chemical reaction of sodium borohydride with elemental arsenic in a low-pressure hydrogen atmosphere. We successfully fabricated h-BAs-based memory devices with ON/OFF current ratios up to 109, low energy consumption of less than 4.65 pJ, and commendable stability. Furthermore, we have developed flexible h-BAs-based memristors with good stability and robustness. This research not only provides a promising avenue for synthesizing h-BAs nanosheets, but also underscores their potential in the development of next-generation electronic devices.