PLoS ONE (Jan 2012)

Inter-individual variability and conspecific densities: consequences for population regulation and range expansion.

  • Laura Cardador,
  • Martina Carrete,
  • Santi Mañosa

DOI
https://doi.org/10.1371/journal.pone.0033375
Journal volume & issue
Vol. 7, no. 3
p. e33375

Abstract

Read online

The presence of conspecifics can strongly modulate the quality of a breeding site. Both positive and negative effects of conspecifics can act on the same individuals, with the final balance between its costs and benefits depending on individual characteristics. A particular case of inter-individual variation found in many avian species is chromatic variability. Among birds, plumage coloration can co-vary with morphology, physiology and behavior as well as with age. These relationships suggest that cost-benefit balances of conspecific presence may be different for individuals with different colorations. We investigated whether inter-individual variability affects population regulation and expansion processes by analyzing potential differences in density-dependent productivity and settlement patterns in relation to plumage coloration in a population of a long-lived avian species recently undergoing a notable increase in numbers and distribution range. Our results show strong variation in the effect of density on productivity of breeding pairs depending on plumage coloration of their members. Productivity of dark birds decreased along the breeding density gradient while that of lighter breeders remained unchanged with conspecific density. In a similar way, our results showed an uneven occupation of localities by individuals with different plumage coloration in relation to local densities, with the breeding of lighter harriers more aggregated than that of dark-brown ones. At a population scale, darker birds had higher probability of colonization of the most isolated, empty sites. Explanations for species range expansion and population regulation usually make the inferred assumption that species traits are similar among individuals. However, in most species, there could be individual variation in niche requirements or dispersal propensities among individuals with different traits. Our results contribute to the growing appreciation that the individual traits, but not the average trait at the level of species, are important during population regulation and expansion processes.