Food & Nutrition Research (Jul 2014)

Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review

  • Ursula Schwab,
  • Lotte Lauritzen,
  • Tine Tholstrup,
  • Thorhallur Haldorssoni,
  • Ulf Riserus,
  • Matti Uusitupa,
  • Wulf Becker

Journal volume & issue
Vol. 58, no. 0
pp. 1 – 26


Read online

The effects of both the amount and quality of dietary fat have been studied intensively during the past decades. Previously, low-fat diets were recommended without much attention to the quality of fat, whereas there is general emphasis on the quality of fat in current guidelines. The objective of this systematic review (SR) was to assess the evidence of an effect of the amount and type of dietary fat on body weight (BW), risk factors, and risk of non-communicable diseases, that is, type 2 diabetes (T2DM), cardiovascular diseases (CVD), and cancer in healthy subjects or subjects at risk for these diseases. This work was performed in the process of updating the fourth edition of the Nordic Nutrition Recommendations from 2004. The literature search was performed in October 2010 covering articles published since January 2000. A complementary search was done in February 2012 covering literature until December 2011. Two authors independently selected articles for inclusion from a total of about 16,000 abstracts according to predefined criteria. Randomized controlled trials (RCT) and prospective cohort studies (PCS) were included as well as nested case–control studies. A few retrospective case–control studies were also included when limited or no data were available from other study types. Altogether 607 articles were quality graded and the observed effects in these papers were summarized. Convincing evidence was found that partial replacement of saturated fat (SFA) with polyunsaturated fat (PUFA) or monounsaturated fat (MUFA) lowers fasting serum/plasma total and LDL cholesterol concentrations. The evidence was probable for a decreasing effect of fish oil on concentration of serum/plasma total triglycerides as compared with MUFA. Beneficial effect of MUFA both on insulin sensitivity and fasting plasma/serum insulin concentration was considered as probable in comparisons of MUFA and carbohydrates versus SFA, whereas no effect was found on fasting glucose concentration in these comparisons. There was probable evidence for a moderate direct association between total fat intake and BW. Furthermore, there was convincing evidence that partial replacement of SFA with PUFA decreases the risk of CVD, especially in men. This finding was supported by an association with biomarkers of PUFA intake; the evidence of a beneficial effect of dietary total PUFA, n-6 PUFA, and linoleic acid (LA) on CVD mortality was limited suggestive. Evidence for a direct association between total fat intake and risk of T2DM was inconclusive, whereas there was limited-suggestive evidence from biomarker studies that LA is inversely associated with the risk of T2DM. However, there was limited-suggestive evidence in biomarker studies that odd-chain SFA found in milk fat and fish may be inversely related to T2DM, but these associations have not been supported by controlled studies. The evidence for an association between dietary n-3 PUFA and T2DM was inconclusive. Evidence for effects of fat on major types of cancer was inconclusive regarding both the amount and quality of dietary fat, except for prostate cancer where there was limited-suggestive evidence for an inverse association with intake of ALA and for ovarian cancer for which there was limited-suggestive evidence for a positive association with intake of SFA. This SR reviewed a large number of studies focusing on several different health outcomes. The time period covered by the search may not have allowed obtaining the full picture of the evidence in all areas covered by this SR. However, several SRs and meta-analyses that covered studies published before year 2000 were evaluated, which adds confidence to the results. Many of the investigated questions remain unresolved, mainly because of few studies on certain outcomes, conflicting results from studies, and lack of high quality–controlled studies. There is thus an evident need of highly controlled RCT and PCS with sufficient number of subjects and long enough duration, specifically regarding the effects of the amount and quality of dietary fat on insulin sensitivity, T2DM, low-grade inflammation, and blood pressure. New metabolic and other potential risk markers and utilization of new methodology in the area of lipid metabolism may provide new insight.