Journal of Integrative Agriculture (Apr 2023)

Use of transcriptome sequencing to explore the effect of CSRP3 on chicken myoblasts

  • Yan-ju SHAN,
  • Gai-ge JI,
  • Ming ZHANG,
  • Yi-fan LIU,
  • Yun-jie TU,
  • Xiao-jun JU,
  • Jing-ting SHU,
  • Jian-min ZOU

Journal volume & issue
Vol. 22, no. 4
pp. 1159 – 1171

Abstract

Read online

The mechanisms that regulate the specificity and maintenance of chicken muscle fiber types remain largely unknown. In mammals, CSRP3 has been shown to play a vital role in the maintenance of typical muscle structure and function. This study investigated the role that CSRP3 plays in chicken skeletal muscle. First, the antibody against chicken CSRP3 protein was prepared, and the expression levels of the mRNA and protein of the CSRP3 gene in four chicken skeletal muscles with different myofiber compositions were compared. Then the effects of CSRP3 silencing on the expression profile of chicken myoblast transcriptomes were analyzed. The results showed that the expression levels of the mRNA and protein of the CSRP3 gene were both associated with the composition of fiber types in chicken skeletal muscles. A total of 650 genes with at least 1.5-fold differences (Q<0.05) were identified, of which 255 genes were upregulated and 395 genes were downregulated by CSRP3 silencing. Functional enrichment showed that several pathways, including adrenergic signaling in cardiomyocytes, adipocytokine signaling pathway and apelin signaling pathway, were significantly (P<0.05) enriched both in differentially expressed genes and all expressed genes. The co-expressed gene network suggested that CSRP3 silencing caused a compensatory upregulation (Q<0.05) of genes related to the assembly of myofibrils, muscle differentiation, and contraction. Meanwhile, two fast myosin heavy chain genes (MyH1B and MyH1E) were upregulated (Q<0.05) upon CSRP3 silencing. These results suggested that CSRP3 plays a crucial role in chicken myofiber composition, and affects the distribution of chicken myofiber types, probably by regulating the expression of MyH1B and MyH1E.

Keywords