Synthesis of Novel Pyrazinamide Derivatives Based on 3-Chloropyrazine-2-carboxamide and Their Antimicrobial Evaluation
Ondrej Jandourek,
Marek Tauchman,
Pavla Paterova,
Klara Konecna,
Lucie Navratilova,
Vladimir Kubicek,
Ondrej Holas,
Jan Zitko,
Martin Dolezal
Affiliations
Ondrej Jandourek
Department of Biological and Medical Sciences, Teaching and Research Center of Charles University, Faculty of Pharmacy in Hradec Kralove, Charles University, Zborovska 2089, Hradec Kralove 50003, Czech Republic
Marek Tauchman
Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203/8, Hradec Kralove 50005, Czech Republic
Pavla Paterova
Department of Clinical Microbiology, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
Klara Konecna
Department of Biological and Medical Sciences, Teaching and Research Center of Charles University, Faculty of Pharmacy in Hradec Kralove, Charles University, Zborovska 2089, Hradec Kralove 50003, Czech Republic
Lucie Navratilova
Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203/8, Hradec Kralove 50005, Czech Republic
Vladimir Kubicek
Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203/8, Hradec Kralove 50005, Czech Republic
Ondrej Holas
Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203/8, Hradec Kralove 50005, Czech Republic
Jan Zitko
Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203/8, Hradec Kralove 50005, Czech Republic
Martin Dolezal
Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203/8, Hradec Kralove 50005, Czech Republic
Aminodehalogenation of 3-chloropyrazine-2-carboxamide with variously substituted benzylamines yielded a series of fifteen 3-benzylaminopyrazine-2-carboxamides. Four compounds possessed in vitro whole cell activity against Mycobacterium tuberculosis H37Rv that was at least equivalent to that of the standard pyrazinamide. MIC values ranged from 6 to 42 μM. The best MIC (6 μM) was displayed by 3-[(4-methylbenzyl)amino]pyrazine-2-carboxamide (8) that also showed low cytotoxicity in the HepG2 cell line (IC50 ≥ 250 μM). Only moderate activity against Enterococcus faecalis and Staphylococcus aureus was observed. No activity was detected against any of tested fungal strains. Molecular docking with mycobacterial enoyl-ACP reductase (InhA) was performed to investigate the possible target of the prepared compounds. Active compounds shared common binding interactions of known InhAinhibitors. Antimycobacterial activity of the title compounds was compared to the previously published benzylamino-substituted pyrazines with differing substitution on the pyrazine core (carbonitrile moiety). The title series possessed comparable activity and lower cytotoxicity than molecules containing a carbonitrile group on the pyrazine ring.