First Evaluation of PRISMA Level 1 Data for Water Applications
Claudia Giardino,
Mariano Bresciani,
Federica Braga,
Alice Fabbretto,
Nicola Ghirardi,
Monica Pepe,
Marco Gianinetto,
Roberto Colombo,
Sergio Cogliati,
Semhar Ghebrehiwot,
Marnix Laanen,
Steef Peters,
Thomas Schroeder,
Javier A. Concha,
Vittorio E. Brando
Affiliations
Claudia Giardino
Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), 20133 Milan, Italy
Mariano Bresciani
Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), 20133 Milan, Italy
Federica Braga
Institute of Marine Sciences—National Research Council (CNR-ISMAR), 30122 Venice, Italy
Alice Fabbretto
Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), 20133 Milan, Italy
Nicola Ghirardi
Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), 20133 Milan, Italy
Monica Pepe
Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), 20133 Milan, Italy
Marco Gianinetto
Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), 20133 Milan, Italy
Roberto Colombo
Remote Sensing of Environmental Dynamics Laboratory, Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126 Milano, Italy
Sergio Cogliati
Remote Sensing of Environmental Dynamics Laboratory, Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126 Milano, Italy
Semhar Ghebrehiwot
Water Insight, 6709 PG Wageningen, The Netherlands
Marnix Laanen
Water Insight, 6709 PG Wageningen, The Netherlands
Steef Peters
Water Insight, 6709 PG Wageningen, The Netherlands
Thomas Schroeder
CSIRO, Oceans & Atmosphere, Brisbane, QLD 4001, Australia
Javier A. Concha
Institute of Marine Sciences, National Research Council of Italy (CNR-ISMAR), 00133 Rome, Italy
Vittorio E. Brando
Institute of Marine Sciences, National Research Council of Italy (CNR-ISMAR), 00133 Rome, Italy
This study presents a first assessment of the Top-Of-Atmosphere (TOA) radiances measured in the visible and near-infrared (VNIR) wavelengths from PRISMA (PRecursore IperSpettrale della Missione Applicativa), the new hyperspectral satellite sensor of the Italian Space Agency in orbit since March 2019. In particular, the radiometrically calibrated PRISMA Level 1 TOA radiances were compared to the TOA radiances simulated with a radiative transfer code, starting from in situ measurements of water reflectance. In situ data were obtained from a set of fixed position autonomous radiometers covering a wide range of water types, encompassing coastal and inland waters. A total of nine match-ups between PRISMA and in situ measurements distributed from July 2019 to June 2020 were analysed. Recognising the role of Sentinel-2 for inland and coastal waters applications, the TOA radiances measured from concurrent Sentinel-2 observations were added to the comparison. The results overall demonstrated that PRISMA VNIR sensor is providing TOA radiances with the same magnitude and shape of those in situ simulated (spectral angle difference, SA, between 0.80 and 3.39; root mean square difference, RMSD, between 0.98 and 4.76 [mW m−2 sr−1 nm−1]), with slightly larger differences at shorter wavelengths. The PRISMA TOA radiances were also found very similar to Sentinel-2 data (RMSD −2 sr−1 nm−1]), and encourage a synergic use of both sensors for aquatic applications. Further analyses with a higher number of match-ups between PRISMA, in situ and Sentinel-2 data are however recommended to fully characterize the on-orbit calibration of PRISMA for its exploitation in aquatic ecosystem mapping.