Applied Mathematics and Nonlinear Sciences (Mar 2020)

Nonlinear sub-diffusion and nonlinear sub-diffusion dispersion equations and their proposed solutions

  • Sene Ndolane,
  • Abdelmalek Karima

DOI
https://doi.org/10.2478/amns.2020.1.00020
Journal volume & issue
Vol. 5, no. 1
pp. 221 – 236

Abstract

Read online

Many investigations related to the analytical solutions of the nonlinear sub-diffusion equation exist. In this paper, we investigate the conditions under which the analytical and the approximate solutions of the nonlinear sub-diffusion equation and the nonlinear sub-advection dispersion equation exist. In other words, the problems of existence and uniqueness of the solutions the fractional diffusion equations have been addressed. We use the Banach fixed Theorem. After proving the existence and uniqueness, we propose the analytical and the approximate solutions of the nonlinear sub-diffusion, and the nonlinear sub-advection dispersion equations. We analyze the impact of the sub-diffusion coefficient, the advection coefficient and the dispersion coefficient in the diffusion processes. The homotopy perturbation Laplace transform method has been used in this paper. Some numerical examples are provided to illustrate the main results of the article.

Keywords