PLoS ONE (Jan 2013)

DNA-fragments are transcytosed across CaCo-2 cells by adsorptive endocytosis and vesicular mediated transport.

  • Lene E Johannessen,
  • Bjørn Spilsberg,
  • Christer R Wiik-Nielsen,
  • Anja B Kristoffersen,
  • Arne Holst-Jensen,
  • Knut G Berdal

DOI
https://doi.org/10.1371/journal.pone.0056671
Journal volume & issue
Vol. 8, no. 2
p. e56671

Abstract

Read online

Dietary DNA is degraded into shorter DNA-fragments and single nucleosides in the gastrointestinal tract. Dietary DNA is mainly taken up as single nucleosides and bases, but even dietary DNA-fragments of up to a few hundred bp are able to cross the intestinal barrier and enter the blood stream. The molecular mechanisms behind transport of DNA-fragments across the intestine and the effects of this transport on the organism are currently unknown. Here we investigate the transport of DNA-fragments across the intestinal barrier, focusing on transport mechanisms and rates. The human intestinal epithelial cell line CaCo-2 was used as a model. As DNA material a PCR-fragment of 633 bp was used and quantitative real time PCR was used as detection method. DNA-fragments were found to be transported across polarized CaCo-2 cells in the apical to basolateral direction (AB). After 90 min the difference in directionality AB vs. BA was >10(3) fold. Even undegraded DNA-fragments of 633 bp could be detected in the basolateral receiver compartment at this time point. Transport of DNA-fragments was sensitive to low temperature and inhibition of endosomal acidification. DNA-transport across CaCo-2 cells was not competed out with oligodeoxynucleotides, fucoidan, heparin, heparan sulphate and dextrane sulphate, while linearized plasmid DNA, on the other hand, reduced transcytosis of DNA-fragments by a factor of approximately 2. Our findings therefore suggest that vesicular transport is mediating transcytosis of dietary DNA-fragments across intestinal cells and that DNA binding proteins are involved in this process. If we extrapolate our findings to in vivo conditions it could be hypothesized that this transport mechanism has a function in the immune system.