The Scientific World Journal (Jan 2014)

Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase

  • Sonam Gaba,
  • Salma Jamal,
  • Open Source Drug Discovery Consortium,
  • Vinod Scaria

DOI
https://doi.org/10.1155/2014/957107
Journal volume & issue
Vol. 2014

Abstract

Read online

Schistosomiasis is a neglected tropical disease caused by a parasite Schistosoma mansoni and affects over 200 million annually. There is an urgent need to discover novel therapeutic options to control the disease with the recent emergence of drug resistance. The multifunctional protein, thioredoxin glutathione reductase (TGR), an essential enzyme for the survival of the pathogen in the redox environment has been actively explored as a potential drug target. The recent availability of small-molecule screening datasets against this target provides a unique opportunity to learn molecular properties and apply computational models for discovery of activities in large molecular libraries. Such a prioritisation approach could have the potential to reduce the cost of failures in lead discovery. A supervised learning approach was employed to develop a cost sensitive classification model to evaluate the biological activity of the molecules. Random forest was identified to be the best classifier among all the classifiers with an accuracy of around 80 percent. Independent analysis using a maximally occurring substructure analysis revealed 10 highly enriched scaffolds in the actives dataset and their docking against was also performed. We show that a combined approach of machine learning and other cheminformatics approaches such as substructure comparison and molecular docking is efficient to prioritise molecules from large molecular datasets.