AIMS Mathematics (Jan 2022)

Some subvarieties of semiring variety COS$ ^{+}_{3} $

  • Xuliang Xian,
  • Yong Shao,
  • Junling Wang

DOI
https://doi.org/10.3934/math.2022237
Journal volume & issue
Vol. 7, no. 3
pp. 4293 – 4303

Abstract

Read online

In this paper, we study some subvarieties of a semiring variety determined by certain additional identities. We first present alternative characterizations for equivalences $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{L}} $, $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{R}} $, $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{D}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{L}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{R}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{D}} $. Then we give the sufficient and necessary conditions for these equivalences to be congruence. Finally, we prove that semiring classes defined by these congruences are varieties and provide equational bases.

Keywords