Atmospheric Chemistry and Physics (Jun 2018)

Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations

  • A. Beck,
  • J. Henneberger,
  • J. P. Fugal,
  • R. O. David,
  • L. Lacher,
  • U. Lohmann

DOI
https://doi.org/10.5194/acp-18-8909-2018
Journal volume & issue
Vol. 18
pp. 8909 – 8927

Abstract

Read online

In situ cloud observations at mountain-top research stations regularly measure ice crystal number concentrations (ICNCs) orders of magnitudes higher than expected from measurements of ice nucleating particle (INP) concentrations. Thus, several studies suggest that mountain-top in situ cloud microphysical measurements are influenced by surface processes, e.g., blowing snow, hoar frost or riming on snow-covered trees, rocks and the snow surface. This limits the relevance of such measurements for the study of microphysical properties and processes in free-floating clouds.This study assesses the impact of surface processes on in situ cloud observations at the Sonnblick Observatory in the Hohen Tauern region, Austria. Vertical profiles of ICNCs above a snow-covered surface were observed up to a height of 10 m. The ICNC decreases at least by a factor of 2 at 10 m if the ICNC at the surface is larger than 100 L−1. This decrease can be up to 1 order of magnitude during in-cloud conditions and reached its maximum of more than 2 orders of magnitudes when the station was not in cloud. For one case study, the ICNC for regular and irregular ice crystals showed a similar relative decrease with height. This suggests that either surface processes produce both irregular and regular ice crystals or other effects modify the ICNCs near the surface. Therefore, two near-surface processes are proposed to enrich ICNCs near the surface. Either sedimenting ice crystals are captured in a turbulent layer above the surface or the ICNC is enhanced in a convergence zone because the cloud is forced over a mountain. These two processes would also have an impact on ICNCs measured at mountain-top stations if the surrounding surface is not snow covered. Conclusively, this study strongly suggests that ICNCs measured at mountain-top stations are not representative of the properties of a cloud further away from the surface.