Journal of High Energy Physics (Feb 2024)

Bilinear R-parity violating supersymmetry under the light of neutrino oscillation, Higgs and flavor data

  • Arghya Choudhury,
  • Sourav Mitra,
  • Arpita Mondal,
  • Subhadeep Mondal

DOI
https://doi.org/10.1007/JHEP02(2024)004
Journal volume & issue
Vol. 2024, no. 2
pp. 1 – 33

Abstract

Read online

Abstract In this work, we explore a well motivated beyond the Standard Model scenario, namely, R-parity violating Supersymmetry, in the context of light neutrino masses and mixing. We assume that the R-parity is only broken by the lepton number violating bilinear term. We try to fit two non-zero neutrino mass square differences and three mixing angle values obtained from the global χ 2 analysis of neutrino oscillation data. We have also taken into account the updated data of the standard model (SM) Higgs mass and its coupling strengths with other SM particles from LHC Run-II along with low energy flavor violating constraints like rare b-hadron decays. We have used a Markov Chain Monte Carlo (MCMC) analysis to constrain the new physics parameter space. While doing so, we ensure that all the existing collider constraints are duly taken into account. Through our analysis, we have derived the most stringent constraints possible to date with existing data on the 9 bilinear R-parity violating parameters along with μ and tan β. We further explore the possibility of explaining the anomalous muon (g - 2) measurement staying within the parameter space allowed by neutrino, Higgs and flavor data while satisfying the collider constraints as well. We find that there still remains a small sub-TeV parameter space where the required excess can be obtained.

Keywords