Metals (Jul 2018)

Modeling and Simulation of the Static Recrystallization of 5754 Aluminium Alloy by Cellular Automaton

  • Changqing Huang,
  • Xiaodong Jia,
  • Zhiwu Zhang

DOI
https://doi.org/10.3390/met8080585
Journal volume & issue
Vol. 8, no. 8
p. 585

Abstract

Read online

To study the factors that affect the mechanical properties of materials, double-pass hot compression tests were performed under different deformation parameters using a Gleeble-3500 thermo-simulation machine. The static softening behavior of 5754 aluminium alloy during testing was analyzed by the 0.2% offset-stress method. The results show that the static softening fraction was greatly influenced by deformation parameters and rapidly increased with increasing delay time, strain rate and deformation temperature. In addition, a mesoscopic cellular automaton (CA) model was employed to simulate the microstructural evolution of the static recrystallization (SRX) during the double-pass hot compression test of the 5754 aluminium alloy. The results show that the SRX nuclei first formed along the grain boundaries, where the energy was sufficient, and deformation parameters had a significant influence on the SRX of the 5754 aluminium alloy. The recrystallized volume fraction increased with increasing temperature, strain rate, and delay time among deformation stages. The mean recrystallized grain size increased with increasing deformation temperature and delay time. However, the mean grain size was slightly reduced with an increase in the strain rate from 0.1 s−1 to 1 s−1 at constant temperature and delay time.

Keywords