ISPRS International Journal of Geo-Information (May 2024)
Oil Palm Bunch Ripeness Classification and Plantation Verification Platform: Leveraging Deep Learning and Geospatial Analysis and Visualization
Abstract
Oil palm cultivation thrives as a prominent agricultural endeavor within the southern region of Thailand, where the country ranks third globally in production, following Malaysia and Indonesia. The assessment of oil palm bunch ripeness serves various purposes, notably in determining purchasing prices, pre-harvest evaluations, and evaluating the impacts of disasters or low market prices. Presently, two predominant methods are employed for this assessment, namely human evaluation, and machine learning for ripeness classification. Human assessment, while boasting high accuracy, necessitates the involvement of farmers or experts, resulting in prolonged processing times, especially when dealing with extensive datasets or dispersed fields. Conversely, machine learning, although capable of accurately classifying harvested oil palm bunches, faces limitations concerning its inability to process images of oil palm bunches on trees and the absence of a platform for on-tree ripeness classification. Considering these challenges, this study introduces the development of a classification platform leveraging machine learning (deep learning) in conjunction with geospatial analysis and visualization to ascertain the ripeness of oil palm bunches while they are still on the tree. The research outcomes demonstrate that oil palm bunch ripeness can be accurately and efficiently classified using a mobile device, achieving an impressive accuracy rate of 99.89% with a training dataset comprising 8779 images and a validation accuracy of 96.12% with 1160 images. Furthermore, the proposed platform facilitates the management and processing of spatial data by comparing coordinates derived from images with oil palm plantation data obtained through crowdsourcing and the analysis of cloud or satellite images of oil palm plantations. This comprehensive platform not only provides a robust model for ripeness assessment but also offers potential applications in government management contexts, particularly in scenarios necessitating real-time information on harvesting status and oil palm plantation conditions.
Keywords