Engineering Proceedings (Nov 2022)
Numerical Study of a Microfluidic-Based Strain Sensor: Proof of Concept
Abstract
This paper conducts a numerical study to prove the concept of a low-cost microfluidic-based strain sensor and investigates the key design parameters that affect the sensor sensitivity by using both theoretical and finite element models. The strain sensor is composed of an electrolyte-enabled microchannel integrated with a pair of interconnects and silicone-based packaging. The results show that the strain sensor has the highest sensitivity at the following chosen design parameters: the width and length of the primary microchannel are set at 0.2 mm and 20 mm, width ratio equals 2, and number of grid lines is 10.
Keywords