Energies (Jun 2024)

Spatial and Temporal Variability of Ocean Thermal Energy Resource of the Pacific Islands

  • Jessica Borges Posterari,
  • Takuji Waseda,
  • Takeshi Yasunaga,
  • Yasuyuki Ikegami

DOI
https://doi.org/10.3390/en17112766
Journal volume & issue
Vol. 17, no. 11
p. 2766

Abstract

Read online

A lack of natural resources drives the oil dependency in Pacific Island Countries and Territories (PICTs), hampering energy security and imposing high electricity tariffs in the region. Nevertheless, the Western Equatorial Pacific is known for its large Sea Surface Temperature (SST) and deep-sea water (DSW) temperature difference favorable for harvesting thermal energy. In this study, we selected 18 PICTs in the western Equatorial Pacific to estimate Annual Energy Production (AEP) for a 1 MW class Ocean Thermal Energy Conversion (OTEC) plant. We combined the DSW temperature from the mean in situ Argo profiles and 1 km resolution satellite SST data to estimate the thermal energy resource resolving the fine features of the island coastline. Furthermore, the twenty-year-long SST dataset was used to analyze the SST variability. The analysis showed that Equatorial islands and Southern islands have the highest inter-annual variability due to El Nino Southern Oscillation (ENSO). The power density varied from 0.26 to 0.32 W/m2 among the islands, with the lowest values found for the southernmost islands near the South Equatorial Countercurrent. Islands within the South Equatorial Current, Equatorial Undercurrent, and North Equatorial Countercurrent showed the highest values for both power density and gross power. Considering a 1 MW class OTEC plant, Annual Energy Production (AEP) in 2022 varied from 7 GWh to 8 GWh, with relatively low variability among islands near the Equator and in low latitudes. Considering the three variables, AEP, SST variability, and distance from the shore, Nauru is a potential candidate for OTEC, with a net power of 1.14 MW within 1 km from the shore.

Keywords