Nature Communications (Jul 2019)

Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma

  • Thanos P. Mourikis,
  • Lorena Benedetti,
  • Elizabeth Foxall,
  • Damjan Temelkovski,
  • Joel Nulsen,
  • Juliane Perner,
  • Matteo Cereda,
  • Jesper Lagergren,
  • Michael Howell,
  • Christopher Yau,
  • Rebecca C. Fitzgerald,
  • Paola Scaffidi,
  • The Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium,
  • Francesca D. Ciccarelli

DOI
https://doi.org/10.1038/s41467-019-10898-3
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 17

Abstract

Read online

Identifying driver genes in unstable, heterogenous tumour types can be challenging. Here, Mourikis, Benedetti, Foxall and colleagues present a machine learning algorithm to tackle this problem in esophageal adenocarcinoma.