Nitrogen deposition mitigates long-term phosphorus input-induced stimulative effects on soil respiration in a tropical forest
Xingyun Huang,
Yingwen Li,
Shiqin Yu,
Yongxing Cui,
Fangyuan Guan,
Yongxing Li,
Jingtao Wu,
Yang Hu,
Zhian Li,
Ping Zhuang,
Bi Zou,
Guoming Qin,
Jingfan Zhang,
Jinge Zhou,
Ruyi Ding,
Faming Wang
Affiliations
Xingyun Huang
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
Yingwen Li
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
Shiqin Yu
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
Yongxing Cui
Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
Fangyuan Guan
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
Yongxing Li
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
Jingtao Wu
Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
Yang Hu
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
Zhian Li
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
Ping Zhuang
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
Bi Zou
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
Guoming Qin
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
Jingfan Zhang
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
Jinge Zhou
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
Ruyi Ding
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
Faming Wang
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; College of Ecology, Hainan University, Haikou 570228, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, PR China; Corresponding author at: Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
Atmospheric nitrogen (N) deposition and anthropogenic phosphorus (P) input simultaneously affect soil respiration (RS), a crucial process that mediates soil carbon (C) cycling. However, the interaction of N deposition and anthropogenic P input on RS, as well as its components—autotrophic respiration (RA) and heterotrophic respiration (RH)—remain largely unexplored. Herein, we conducted an 8-year field experiment with N and P additions in a tropical secondary forest, integrating the vegetation traits, soil physicochemical properties, organic C fractions, and microbial properties, to explore the effects of nutrient inputs and their interactions on RS, RA, and RH. Over eight years, along P input significantly increased RS by 19.2% and RH by 42.1%. These increases were partially mitigated (by 33.2% annually for RS and 58.3% annually for RH) with the addition of N. In contrast, the co-addition of N and P enhanced RA compared to alone N or P addition, suggesting that N deposition mitigated the stimulative effect of P input on RS by reducing RH rather than RA. The structural equation model further revealed that N deposition reduced RH primarily by increasing soil N:P ratio and decreasing both the labile C fraction and fungi biomass. Our findings suggest that prevalent N deposition across low latitudes could have substantially mitigate C emissions from forest soils under anthropogenic P input.