BMC Medicine (Oct 2023)

Deep learning models of ultrasonography significantly improved the differential diagnosis performance for superficial soft-tissue masses: a retrospective multicenter study

  • Bin Long,
  • Haoyan Zhang,
  • Han Zhang,
  • Wen Chen,
  • Yang Sun,
  • Rui Tang,
  • Yuxuan Lin,
  • Qiang Fu,
  • Xin Yang,
  • Ligang Cui,
  • Kun Wang

DOI
https://doi.org/10.1186/s12916-023-03099-9
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Most of superficial soft-tissue masses are benign tumors, and very few are malignant tumors. However, persistent growth, of both benign and malignant tumors, can be painful and even life-threatening. It is necessary to improve the differential diagnosis performance for superficial soft-tissue masses by using deep learning models. This study aimed to propose a new ultrasonic deep learning model (DLM) system for the differential diagnosis of superficial soft-tissue masses. Methods Between January 2015 and December 2022, data for 1615 patients with superficial soft-tissue masses were retrospectively collected. Two experienced radiologists (radiologists 1 and 2 with 8 and 30 years’ experience, respectively) analyzed the ultrasound images of each superficial soft-tissue mass and made a diagnosis of malignant mass or one of the five most common benign masses. After referring to the DLM results, they re-evaluated the diagnoses. The diagnostic performance and concerns of the radiologists were analyzed before and after referring to the results of the DLM results. Results In the validation cohort, DLM-1 was trained to distinguish between benign and malignant masses, with an AUC of 0.992 (95% CI: 0.980, 1.0) and an ACC of 0.987 (95% CI: 0.968, 1.0). DLM-2 was trained to classify the five most common benign masses (lipomyoma, hemangioma, neurinoma, epidermal cyst, and calcifying epithelioma) with AUCs of 0.986, 0.993, 0.944, 0.973, and 0.903, respectively. In addition, under the condition of the DLM-assisted diagnosis, the radiologists greatly improved their accuracy of differential diagnosis between benign and malignant tumors. Conclusions The proposed DLM system has high clinical application value in the differential diagnosis of superficial soft-tissue masses.

Keywords